Что такое гигроскопичность ткани

свойства тканей

Для производства тканей широко используются волокнистые вещества растительного (хлопок, лен), животного (шерсть, шелк) происхождения, а также искусственные (шелк, штапельное полотно) и синтетические (капрон, лавсан). Эти волокна характеризуются тем, как они относятся к теплу (теплозащитность), к воздуху (воздухопроницаемость) и к воде (гигроскопичность, паропроницаемость, водоемкость, испаряемость влаги). Эти показатели находятся в зависимости от веса, толщины и пористости ткани.

Под теплозащитными свойствами подразумевается способность к поддержанию теплопотерь организма в окружающую среду на определённом уровне, что во многом зависит от покроя, количества слоёв одежды, тепловых показателей отдельных тканей, плотности прилегания одежды к телу.

Поскольку неподвижный (без конвекционных токов) пододежный воздух обладает крайне низкой теплопроводностью, то одежда куда лучше «греет» при увеличении числа ее слоёв независимо от теплопроводности материалов, из которых она сделана.

Изучение теплозащитности тканей проводится на человеке с учётом всех факторов внешней среды, а также на манекенах специальными приборами. В качестве эталона теплозащитных свойств одежды предложена единица «кло» (теплоизоляция комнатной одежды, равная 0,18 градус ккал/м2 • час. При температуре воздуха 21°С, относительной влажности 50% и скорости движения воздуха 10 см/сек одна единица теплоизоляции «кло» обеспечивает комфорт спокойно сидящему человеку, одетому в рабочий костюм и обычное белье (если теплообразование у него составляет 50 ккал/м2 • час и из них 38 ккал/м2 • час тепла проходит через одежду).

Воздухопроницаемость необходима для поддержания теплового баланса организма с внешней средой и удаления из пододёжного пространства углекислоты, влаги и кожных выделений. Но чем выше воздухопроницаемость, тем ниже теплозащитные свойства.

Воздухопроницаемость ткани зависит в основном от ее строения, толщины, способа переплетения, количества и величины пор.

Циркуляция воздуха через ткань и одежду происходит под влиянием конвекции (связанной с нагревом воздуха у поверхности тела и с движениями человека), а также разности давлений наружного и пододежного воздуха при ветре.

Все эти факторы действуют в сочетании друг с другом и поэтому трудно учесть влияние каждого из них в отдельности. Ясно лишь, что «воздушность» шерстяной материи выше, чем льняной и хлопчатобумажной, что она снижается от увлажнения и загрязнения ткани и что наибольшую воздухопроницаемость должны иметь летнее платье и белье, а наименьшую — ткани для верхней зимней одежды (при низкой температуре внешней среды и резких ее колебаниях задача пальто, костюма — воспрепятстовать охлаждению организма).

Показателем вентиляционной способности одежды является содержание углекислоты в пододёжном пространстве, особенно в слое воздуха, непосредственно прилегающем к коже. «Поставщиками» углекислоты являются кожа и загрязненная одежда (в «условиях комфорта» содержание углекислоты колеблется от 0,06 до 0,09%).

Паропроницаемость. Одним из важных свойств тканей является способность их пропускать водяные пары. Они проникают через ткань изнутри (пот у нас образуется непрерывно!) и снаружи — через поры изделия. Паропроницаемость зависит от толщины и пористости ткани, а также от колебаний температуры и относительной влажности воздуха внешней среды; она обеспечивает сохранение нормального теплообмена, а также выделение и удаление газообразных продуктов жизнедеятельности организма.

Гигроскопичность. К свойствам ткани относится их способность сорбировать (поглощать) на своей поверхности водяные пары. Количество поглощаемой гигроскопичной влаги тканями зависит от природы волокон. Это играет важную роль для сохранения теплового равновесия организма человека.

Под влиянием гигроскопичной влаги ткани укорачиваются и утолщаются, в результате чего увеличивается их теплопроводность. Все это сказывается на нашем состоянии и самочувствии. Так, в условиях жаркого сухого климата высокая гигроскопичность (при наличии повышенной паропроницаемость) ткани способствует испарению пота.

Количество гигроскопической влаги, поглощаемой одеждой из воздуха, может достигать 10% веса одежды, причём шерстяные ткани это делают лучше, чем хлопчатобумажные.

Способность отдавать промежуточную воду путём испарения называется испаряемостью. Она у разных тканей различна (более быстро высыхают тонкие и гладкие, шерсть теряет воду медленнее, чем хлопчатобумажная материя, почему и меньше охлаждает тело).

Испаряемость зависит от температуры, влажности, скорости движения воздуха внешней среды, а также от содержания влаги в тканях. Это очень важно, особенно в условиях высоких температур, где необходимо, чтобы одежда хорошо впитывала и быстро отдавала влагу в окружающую среду.

Таким образом, влияние одежды на организм человека в значительной степени определяется свойствами тканей, из которых она изготовлена.

www.pravilnoe-pokhudenie.ru

Определение

Гигроскопичность – это свойство какого-либо материала впитывать и удерживать влагу из воздуха. Некоторых может смутить буква «г» в первой части слова, ведь все мы знаем, что сложные термины, связанные с водой, обычно начинаются с приставки «гидро». Но здесь речь идет немного о другом. Гигроскопичность учитывает впитывание материалами только той воды, которая распылена в воздухе в виде пара, а значит, и приставка нужна совсем другая. «Гигро» означает, что слово имеет отношение к влажности. Все просто.

гигроскопичность этоМы разобрали определение, а теперь пора выяснить, что же на самом деле означает это слово. Воздух вокруг нас имеет определенную влажность – об этом говорят даже в прогнозе погоды. Некоторые волокна способны впитывать эту воду, зачастую изменяя при этом свои свойства. Именно благодаря гигроскопичности одежда и обувь могут намокнуть даже без дождя. В каких случаях это хорошо, а в каких – плохо, узнаем ниже.

Какие материалы обладают гигроскопичностью?

В этой статье речь пойдет в основном о тканях. Но не только они умеют поглощать влагу из воздуха. Показатель гигроскопичности того или иного материала зачастую необходимо знать строителям, мебельщикам, производителям сложного оборудования и многим другим.

Например, все мы знаем, что древесина обладает пористой структурой, это увеличивает ее гигроскопические свойства. Вода, проникая в структуру дерева, деформирует его. Именно поэтому мебель из древесины практически не устанавливается в помещениях с повышенной влажностью. Для уменьшения гигроскопичности могут использоваться специальные пропитки.

Не менее важны и гигроскопические свойства утеплителей, используемых при строительстве. Воздух, находящийся в порах материала, удерживает тепло в помещении. Но если утеплитель намокнет, он мгновенно потеряет свои основные свойства. Поэтому материалы, используемые для этих целей, должны обладать минимальной гигроскопичностью. Идеальный показатель равен 0%.

Гигиенические свойства ткани

Все материалы обладают различными физическими показателями, такими как плотность, прочность и т.д. Но для тканей, которые впоследствии должны превратиться в предметы гардероба, важны и другие свойства – гигиенические. Они определяют то, насколько комфортна будет одежда из того или иного материала.

  • Воздухопроницаемость. Название говорит само за себя. Ткани с высоким показателем воздухопроницаемости способны «дышать», а с низким – защищают от ветра.
  • Паропроницаемость. Способность ткани пропускать влагу с целью отвести пот и другие жидкости от тела.
  • Водоупорность. Защищает тело от жидкостей. Это свойство ткани увеличивают при помощи различных пропиток и полимерных покрытий.
  • Пылеёмкость. Это свойство позволяет ткани удерживать мелкие частички на своей поверхности. Чем болеематериал рыхлый, тем выше показатель пылеёмкости.

гигроскопичность ткани это

  • Электризуемость – способность ткани накапливать статическое электричество.

Не стоит забывать и о теплозащитных свойствах ткани. Это способность поддерживать нормальную температуру тела в то время, когда на улице холодно. А о последнем свойстве поговорим более подробно.

Гигроскопичность ткани

Этот показатель относится к гигиеническим свойствам текстиля, которые, в свою очередь, определяют комфортность того или иного материала при носке. Причем требования к одежде во многом зависят от ее назначения.

Гигроскопичность – это важнейшее свойство спортивной формы или летней одежды. Повышенная температура воздуха и тела приводит к обильному потоотделению, что, в свою очередь, создает немалый дискомфорт для человека. Избавиться от излишней влаги позволяет именно высокая гигроскопичность ткани. Это свойство является важнейшим показателем и для производителей повседневного нижнего белья.

От чего зависит способность ткани впитывать влагу из окружающей среды? В первую очередь – от волокон, из которых она сделана. Кроме того, значение имеет наличие защитных покрытий и пропиток.

Виды и гигроскопичность волокон

Материалы, из которых производятся ткани, могут иметь различное происхождение. Существуют натуральные волокна и синтетические. Для начала поговорим о первых. Они создаются самой природой, хоть и не без участия человека.

гигроскопичность волоконШерсть, состригаемая с различных животных, чаще всего используется для производства теплой одежды. Именно она является одним из лидеров среди натуральных тканей по способности впитывать влагу. Гигроскопичность волокон шерсти составляет примерно 15-17%. Но вот скорость впитывания влаги относительно невелика.

Этот показатель значительно выше у многих других тканей. Например, гигроскопичность хлопка составляет всего 8-9%, зато он способен впитывать влагу намного быстрее шерсти. Другой натуральный материал – лен, получаемый из лубяного волокна. Его способность поглощать влагу может колебаться от 12 до 30%.

Искусственные и синтетические волокна

К первому типу относятся материалы, получаемые из природных соединений. Яркий пример – вискоза. Ее создают с использованием природной целлюлозы. Для вискозных волокон характерна прочность, термостойкость, а также высокая гигроскопичность, равная почти 40%.

Синтетические волокна создают из продуктов переработки нефти и каменного угля. К ним относятся полиамиды. Из этих волокон создают нейлон, капрон и анид. Гигроскопичность у таких материалов довольно низкая, всего 3-4%, зато они сохраняют прочность при растягивании и весьма долговечны. Полиэфирные волокна, из которых создают ткань лавсан, обладают высоким показателем термостойкости и устойчивости к свету. А вот их гигроскопичность минимальна – всего 0,4%.

высокая гигроскопичностьПолиуретановые волокна, являющиеся основой для лайкры и спандекса, также не отличаются способностью впитывать влагу из окружающей среды. Из всего вышесказанного можно сделать вывод, что гигроскопичность одежды из синтетических материалов значительно ниже, чем вещей из натуральных тканей. Но действительно ли это недостаток?

Гигроскопичность – это хорошо или плохо?

Все в мире относительно. Это же можно сказать и о поднятой нами теме. Нельзя однозначно сказать, что гигроскопичность – это хорошо. Да, она позволяет людям проще пережить жару, а спортсменам – выполнять упражнения в более комфортных условиях. Но некоторым тканям излишняя влажность может только навредить.

гигроскопичность одеждыНа примере утеплителя мы уже выяснили, что вода снижает теплоизоляционные свойства материалов. Кроме того, некоторые ткани деформируются под действием влаги – все мы знаем, как растягивается после стирки трикотаж. Такая же участь, только в меньших масштабах, может постигнуть некоторые материалы при очень высокой относительной влажности воздуха. Поэтому не всегда можно с уверенностью сказать, что гигроскопичность ткани – это плюс. Вопрос в предназначении того или иного материала.

Как определяют этот показатель?

В 80-е годы XX века в СССР был создан ГОСТ 3816-81. Он содержит подробное описание методов определения некоторых свойств текстиля, в том числе и гигроскопичности. Вот как это осуществляется.

гигроскопичность хлопкаСпециалисты берут пробы ткани размером 5х20 см и каждую помещают в отдельный стаканчик для взвешивания. Основная задача эксперимента – выяснить, сколько воды впитает материал при определенных условиях. Для этого стаканчик с пробой помещают в эксикатор, в котором влажность воздуха составляет 97-99%. Через 4 часа производится взвешивание образца, а после этого при температуре 105-109оС материал высушивают и определяют его новый вес.

Показатель гигроскопичности (Н) в процентах определяют с помощью формулы: Н = (Мв – Мс) / Мс х 100, где за Мв и Мс принимают, соответственно, массу влажной и сухой ткани.

fb.ru

Производство

Процесс производства тканей называется ткачеством, которое заключается в выработке текстильных полотен путём переплетения двух взаимно перпендикулярных систем нитей.

Процесс ткачества, как правило, является многопереходным и включает в себя: приготовление к ткачеству (перемотка нитей, снование и шлихтование основ, перемотка и шлихтование или замасливание (если надо) утка), проборка или привязка основы на станке, собственно ткачество и разбраковка тканей.

Заключительная обработка тканей называется отделкой и относится к области химической технологии. Включает в себя (опционально): промывку, расшлихтование, варку, отбелку, мерсеризацию, крашение (периодическим или непрерывным способом), печать, стрижку, ворсование, тиснение.

Классификация

Ткани различают в зависимости от сырья, из которого они выработаны, по цвету, на ощупь, по фактуре, по отделке.

По типу сырья

  • натуральные, которые называют также классическими. Они бывают:
    • растительного происхождения (хлопок, лён, конопля, джут);
    • животного происхождения (шерсть, натуральный шёлк);
    • минерального происхождения (ость, остистая ткань, асбест);
  • химические, подразделяются на:
    • искусственные:
      • из природных веществ органического (целлюлоза, белки) и неорганического (стекло, металлы) происхождения: вискоза, ацетат; металлические нити, люрекс;
    • синтетические: из синтетических полимеров, в том числе:
      • полиамидные ткани (дедерон, хемлон, силон),
      • полиэстеры (диолен, слотера, тесил),
      • полипропиленовые ткани,
      • поливиниловые ткани (кашмилон, дралон).

В промышленности и торговле используют различные обозначения для синтетических тканей. Например, РЕРs — полиэстеровый материал с начёсом, РАОН — полиамидная шёлковая ткань, РОРс — полипропиленовый кабель. В составе ткани могут быть однородные нити (100 %) или различной структуры, что указано на сопроводительной этикетке.

Ссылки

По цвету

  • на гладкокрашеные однотонные (суровое полотно, белая ткань, цветная ткань);
  • на многоцветные (меланжевые ткани, мулированные, набивные, пестротканные ткани).

На ощупь

  • тонкие, приятные на ощупь,
  • толстые,
  • редкие,
  • мягкие,
  • грубые,
  • тяжёлые.
  • лёгкие

По фактуре обработки поверхности ткани

  • сукно (прессованное, гладкое, ворсованное),
  • байка (вальцованная, ворсованная),
  • (вальцованные двухсторонние),
  • велюровая ткань (вальцованная, с выровненным ворсом).

По назначению

  • Плательные
  • Блузочные
  • Костюмные
  • Пальтовые
  • Курточные
  • Подкладочные
  • Обивочные (мебельные)
  • Портьерные
  • Технические
  • Бельевые
  • Другие

По свойствам

Кроме приведённых выше типов тканей имеются такие материалы, фактура которых отвечает особым требованиям: ткани могут быть очень прочны, не требовать особого ухода (утюжки, например), многоразового использования и т. д. Ткани имеют определенные свойства: воздухопроницаемость, гигроскопичность, сминаемость, паропроницаемость, водоупорность, капиллярность, теплозащита, пылеёмкость, электризуемость и т. д.

Водоупорность ткани — это способность ткани сопротивляться первоначальному прониканию воды.

Гигроскопичность — это способность ткани поглощать и удерживать водяные пары из воздуха.

Капиллярность — это способность ткани впитывать воду.

Воздухопроницаемость — способность пропускать воздух.

Паропроницаемость — способность ткани пропускать водяные пары.

Электризуемость — это способность материала накапливать на своей поверхности статическое электричество. Антистатические препараты устраняют статическое электричество, которое накапливается в тканях при их изготовлении.

Мерсеризация тканей — это процесс кратковременной обработки ткани концентрированным раствором едкого натра с последующей промывкой её горячей и холодной водой. Мерсеризация предотвращает выцветание тканей, сохраняет первоначальный тон, гигроскопичность и прочность, придает материалу шелковистый блеск.

Для придания внешней отделке тканей расцветки, соответствующей назначению материала, используется печатание — получение узорчатых расцветок на белой или окрашенной ткани (прямая печать — печать по отбеленной или светлоокрашенной ткани; вытравленная печать — печать по окрашенной ткани, резервная печать — печать по неокрашенной ткани).

По структуре ткани, способу переплетения нитей

  • с простым (гладким или главным) переплетением — полотняные, саржевые, сатиновые (атласные),
  • со специальным переплетением — креповые, мелкозернистые ткани (канва),
  • с составным (комбинированным) переплетением (ткани в клетку, квадратами, полосами),
  • типа жаккардовых — с крупноузорчатым переплетением (простым и сложным),
  • с двухслойным переплетением — образуются два самостоятельных полотна ткани, расположенные одно над другим и связанные между собой одной из систем нитью, образующих эти полотна, или специальной нитью основы или утка (износостойкие и теплозащитные тонкосуконные ткани типа драпа и некоторые шёлковые ткани),
  • с ворсовыми переплетениями — с уточноворсовым переплетением (полубархат, вельвет), с основоворсовым переплетением (бархат, плюш),
  • с обработанным краем — кромкой.

По стороне

При определении фактуры ткани необходимо различить правую сторону и изнанку. Правая сторона внешне выглядит значительно наряднее, приятнее на ощупь; цвета на правой стороне ярче и сочнее, рисунок проступает отчётливо. Существуют ткани с одинаковыми сторонами (с двухлицевым переплетением нитей — облегченные драпы, полотно, панама), у которых трудно отличить правую сторону от изнанки. На шерстяных двухсторонних тканях на правой стороне ворс гораздо короче.

По пряже

По системе прядения пряжа может быть гребенной, кардной, аппаратной.

Гребенная пряжа изготовляется из длинноволокнистого хлопка, из длинной шерсти различных видов. Гребенная пряжа отличается гладкостью, ровностью и прочностью. По гребенной системе прядения вырабатывают гладкую, ровную, прочную, эластичную, блестящую пряжу. Ткани из этой пряжи на ощупь очень приятные, мягкие, эластичные, не мнутся, особенно из тонкогребенной шерстяной пряжи (габардин, коверкот и др.). Из более грубых шерстяных тканей данной пряжи (грубогребенной) известен шевиот. Такой тип ткани эластичный, на ощупь жестковатый; поверхность готовой ткани отличается характерным блеском. По гребенной системе прядения вырабатывают и мохеровые ткани, которые значительно мягче и более гладкие, чем шевиот.

Кардную пряжу получают из сырья (хлопок, шерсть и др.) средней длины, которое обрабатывается различными способами, исключая гребнечесание. Ткань из данной пряжи прочная, эластичная, но не одинаковой ровности, отличается небольшой пушистостью.

По аппаратной системе прядения получают пряжу мягкую, пушистую, понижен­ной прочности, не отличающуюся равномерностью. Из аппаратной пряжи изго­товляют тонкосуконные и грубосуконные ткани зимнего назначения (фланель, бумазея, бобрик, сукно шинельное и др.). Ткани из этой пряжи прессуют, вальцуют.

Натуральные ткани

Натуральные х/б ткани — это ткани мягкие, теплые, хорошо впитывающие пот; они применяются как ткани бельевые, сорочечные, блузочные, плательные. Ткани данного типа эластичные, отличаются ровностью и одинаковой толщиной. Отрицательная характерная особенность тканей из хлопка — они обладают значительной сминаемостью и усадкой при стирке.

Натуральные льняные ткани блестящие, гладкие, не раздражают кожу, поскольку к действию разбавленных кислот более устойчивы, чем хлопок. Изделия изо льна обладают лучшими по сравнению с хлопком гигиеническими свойствами, ибо гигроскопичность льна выше, нагревание льняное полотно переносит более легко, оно более теплопроводно. Поэтому из льняных тканей рекомендуют шить летнюю одежду. Лён обладает высокой светостойкостью, от солнечных лучей ткань не теряет цвет. Льняное полотно используют на скатерти и полотенца. Недостаток льна — малая растяжимость и низкая упругость волокна, ткани сильно сминаются, одежда из льняных тканей деформируется.

Натуральные шерстяные ткани — нежные на ощупь, мягкие, тонкие, одинаковой толщины, эластичные, лёгкие, воздухопроницаемы. Они умеренно сминаются. Шерстяные ткани, полученные из пряжи, выработанной по гребенной системе прядения, наиболее высококачественные, обладают несминаемостью. По аппаратной системе прядения шерсти перерабатывают короткую шерсть (тонкую и грубую), получая толстую, рыхлую, малопрочную пряжу, из которой вырабатывают тонкосуконные и грубосуконные ткани; из них шьют платья, костюмы, пальто.

Шёлковые ткани

Натуральные шёлковые ткани; их вырабатывают из тончайших нитей, получаемых из коконов, завиваемых гусеницами шелкопряда (шелковичными червями). Шёлковое волокно (нить) равномерное по толщине, эластичное, блестящее и прочное. Ткани из таких волокон лёгкие, блестящие, воздухопроницаемы, быстро впитывают влагу и быстро сохнут, гигроскопичны. Из шёлковых тканей шьют нарядную одежду — платья, блузы. Недостаток тканей из натурального шёлка — невысокая прочность окраски к свету; этой ткани противопоказаны солнечные лучи, которые снижают её прочность, ультрафиолетовые лучи действуют на неё губительно.

Искусственные шёлковые ткани. Такие ткани (вискоза, ацетатный шёлк) изготовляют из целлюлозы, получаемой из еловой щепы. Искусственную шёлковую ткань рекомендуют для подкладки на костюмы, пальто и другие верхние вещи. При формировании искусственного (вискозного) волокна элементарные твёрдые тонкие нити, выходящие из осадительной ванны, соединяются на центрифугальных прядильных машинах в одну комплексную нить. Эта нить проходит систему прядильных дисков, при помощи которых она получает необходимую вытяжку. Вискозное волокно получают в виде филаментных нитей (шёлка) разной толщины, из которых изготовляют плательные, бельевые и подкладочные ткани. Вискозное волокно обладает хорошей гладкостью и гигроскопичностью, светостойкостью, блеском, в тканях — скольжением, даёт раздвижку и осыпаемость нитей.

Синтетические шёлковые ткани. Их вырабатывают из синтетических волокон, полученных из высокомолекулярных соединений, образованных синтезом из простых низкомолекулярных веществ, которые получены из каменного угля, нефти и природного газа. Полиэстерные (РЕ8Ь) и полиамидные (РАОЬ) шёлка можно обработать таким образом, что они будут водоупорными, им не страшны масляные пятна. В последнее время синтетическим волокнам придаются новые качества — путём механической или химической обработки, например сжатым воздухом, скручиванием. Из таких волокон изготовляют синтетические ткани — чулочную, ткань для верхней одежды. Ткань подобного типа используют для отделки, в изделиях из натуральных тканей.

Смешанные ткани

В целях увеличения срока износа тканей и поднятия износостойкости, что позволит расширить диапазон использования синтетических тканей, учитывая их положительные качества (несминаемость, долговечность, воздухопрони­цаемость), выпускают смешанные ткани. Состав их может быть таков: 70 % шерсти и 30 % синтетического волокна; 40 % шерсти и 60 % синтетического волокна; 45 % шерсти и 55 % полиэстерного шёлкового волокна (РЕ8з); 20 % шерсти и 80 % полиакрилонитрилового волокна (РАИ) и др. Смешанные ткани эластичны, несминаемы, их не требуется утюжить, они не вызывают аллергию у людей с чувствительной кожей. Смешанные ткани стойкие на износ, у них много преимуществ по сравнению с обычными классическими тканями. Поэтому в последние годы заметно возрос спрос на смешанные ткани.

ГОСТ 29298-2005


3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями и сокращения:

3.1 …
3.2 ТКАНЬ СМЕШАННАЯ: Ткань, вырабатываемая из пряжи, содержащей хлопковое волокно с вложением не более 50 % химических волокон и нитей.(Пример: состав 60 % хлопка 40 % вискозы. В свою очередь состав 76 % модала, 19 % шерсти, 5 % лайкры не подходит под определение смешанная ткань.

Названия тканей по фактуре

Эстергаз — это рисунок ткани в крупные двухцветные или многоцветные квадраты, расположенные в шахматном порядке, с поперечными и продольными полосами. Такой рисунок получают путём использования цветной нити в основе и в утке.

Филь-а-филь (Ш-а-Ш — гуськом, шеренгой, ступенчато) — это рисунок ткани с косыми, чётко выступающими ступенчатыми диагоналями или полосами. Подоб­ный рисунок образуется путём комбинации в саржевом переплетении двух контрастных по цвету нитей в основе и в утке. Соотношение основных и уточных перекрытий в раппорте 1:1.

Ткань в крапинку, точками — рисунок с характерными светлыми точками на темном фоне. Такой рисунок образуется при сложном саржевом переплетении (8 нитей) с использованием нитей контрастного цвета. Соотношение основных и уточных перекрытий в раппорте 2 : 2.

Ткань в клетку — рисунок квадратами, прямоугольниками, ромбиками, распо­ложенными в шахматном порядке, образуется путём использования нитей не менее двух цветов в основе и в утке.

«Гусиные лапки» — такой рисунок на ткани образуется путём переплетения нитей различного цвета, иногда и с помощью набивки.

Ткань «омбре» (растушеванная, с наложенными тенями) — одноцветная или многоцветная, в долевую полоску, которая образуется путём переплетения нитей способом сложной саржи (основное, уточное или равностороннее переплетение).

«Пепита» — ткань в мелкую клетку (квадраты, ромбы, прямоугольники), расположенную в шахматном порядке; обычно двухцветная или пестротканая, причём одна нить всегда белого цвета.

«Райе» — ткань с хорошо заметными долевыми полосами одинаковой или различной ширины. Такая ткань изготовляется путём использования нитей контрастных цветов и соответствующим переплетением. Рисунок создается основным переплетением.

«Ёлочка» — рельефный рисунок на ткани в виде косых ломаных линий различной ширины. Образуется в результате переплетения нитей по типу ломаной саржи при изменении диагоналей саржи под прямым углом. Благодаря различному отражению света диагоналями, идущими в разных направлениях, на поверхности ткани видны продольные полоски из чередующихся основных и уточных перекрытий. Часто используются цветные контрастные нити в основе и в утке.

«Шине» — ткань с характерным контуром рисунка (в клетку, Филь-А-Филь и др.), который получают путём печатания — нанесения на ткань различных печатных красок по заданному рисунку.

Травер — это рисунок на ткани с поперечными полосами одинаковой или различной ширины. Такой рисунок создается путём использования нитей контрастных цветов или соответствующим способом переплетения нитей. Рисунок образует уточное переплетение.

dic.academic.ru

Физические свойства тканей делятся на гигиенические, теплозащитные, оптические и электрические.

Гигиеническими принято считать свойства тканей, существенно влияющие на комфортность изготовленной из них одежды и ее теплозащитные свойства. Гигиенические свойства должны учитываться при изготовлении одежды определенного назначения. К этим свойствам относятся гигроскопичность, воздухопроницаемость, паропроницаемость, водоупорность, пылеемкость, электризуемость. Они зависят от волокнистого состава, параметров строения и характера отделки тканей.

Гигроскопичность характеризует способность ткани впитывать влагу из окружающей среды (воздуха). Гигроскопичностью называют влажность ткани при 100%-й относительной влажности воз духа и температуре 20 С. Гигроскопичность %, определяют по результатам взвешивания увлажненного и сухого образцов, используя формулу

ГЧг = (т тс)

где п масса образца, вьтдержанного в течение 4 ч при относительной влажности 100%, г; т масса абсолютно сухого образца, г.

Гигроскопичность тканей зависит от способности составляющих их волокон и нитей смачиваться водой, от строения тканей и от их отделки.

Наибольшей гигроскопичностью обладают чистошерстяные ткани, наименьшей — ткани из синтетических волокон. Гигроскопичность очень важна для изделий бельевого и летнего ассортимента. Способностью быстро впитывать влагу и быстро ее отдавать обладают льняные ткани, гигроскопичность которых около 12%. Хорошей гигроскопичностью обладают ткани из натурального шелка, вискозных волокон, хлопка, ацетатных волокон. Синтетические и три ацетатные ткани имеют низкие показатели гигроскопичности.

Отделка может существенно влиять на гигроскопичность ткани. Водоотталкивающие пропитки, пленочные покрытия, несмываемые аппреты, отделка лаке, водонепроницаемая отделка, противоусадочное и противосминаемое пропитывание, металлизация и флокирование снижают гигроскопичность тканей, так как основаны на получении на поверхности тканей пленок из синтетических полимерных материалов.

Воздухопроницаемость — способность ткани пропускать через себя воздух. Она зависит от волокнистого состава, плотности и вида отделки ткани и характеризуется коэффициентом воздухопроницаемости В который показывает, какое количество воздуха прохо дит через единицу площади в единицу времени при определенной разнице давлений по обе стороны ткани.

Коэффициент воздухопроницаемости В дм подсчитывается по формуле

В КГ/($

где — количество воздуха, прошедшего через материал, дм 8 площадь материала, м 1— длительность прохождения воздуха, с.

Воздухопроницаемость зависит от строения ткани, ее пористости, от вида отделки. длинные перекрытия переплетений повышают воздухопроницаемость. При всех равных условиях наименьшую воздухопроницаемость имеют ткани полотняного переплетения. Несминаемая отделка уменьшает воздухопроницаемость ткани на 20—25%, а каландрирование — на 20—40%.

Воздухопроницаемость очень важна для тканей бельевого и лет него ассортимента. Малоплотные ткани, имеющие большое число сквозных пор, обладают хорошей воздухопроницаемостью и, следовательно, вентилирующей способностью. Плотные ткани из синтетических и триацетатных волокон, ткани со спецпропитками и отделками, материалы с пленочным покрытием, прорезиненные мате риалы вообще не обладают воздухопроницаемостью или имеют низкий показатель этого свойства. Но материалы с низкой воздухопроницаемостью отличаются высокой ветростойкостью. Именно поэтому ткани с пленочными покрытиями широко используются для изготовления штормовок, курток, стеганьих пальто; искусственная кожа и замша применяются для изготовления ветростойкой межсезонной одежды. Поэтому оценку показателей гигиенических свойств материалов всегда следует проводить с учетом их назначения.

Воздухопроницаемость колеблется в очень широких пределах — от 6 до 1500 дм для летних хлопчатобумажных и шелковых тканей этот показатель составляет 500—1 500 дм для пальтовых тканей — до 180 дм для ветрозащитных тканей со специальной пропиткой — 6—10 дм

В процессе влажно-тепловой обработки в результате действия влаги, пара, повышенной температуры могут изменяться линейные размеры текстильных материалов. Изменение линейных размеров — усадка текстильных химических материалов происходит при воздействии на материал влаги и температуры, близкой к температуре термофиксации.

Повышенная тепловая усадка материалов, появляющаяся в результате влажно-тепловой обработки, усложняет технологический процесс, увеличивает трудозатраты и материалоемкость при изготовлении изделий. Усадка более 2% приводит к переводу изделий в меньшие размеры.

Тепловая усадка возрастает с увеличением количества тепловых воздействий на материал. При изготовлении изделий отдельные детали (полочки, воротник) многократно подвергаются влажно-тепловой обработке. С увеличением числа обработок от одной до семи усадка материалов может увеличиваться в 1,4-6 раз.

Предельные режимы влажно-тепловой обработки устанавливают в зависимости от вида ткани и технологической операции. Превышение установленных параметров режима приводит к появлению лас, пятен, опалов, тепловой усадки, чрезмерному утонению рыхлых пушистых тканей. Для отдельных материалов, например объемных, ворсовых, синтетических, трикотажных и нетканых полотен, следует по возможности исключать влажно-тепловую обработку для получения объемной формы деталей. Объемная форма деталей должна создаваться путем конструкторских решений. С целью уменьшения усадки материалов в текстильной промышленности в процессе отделки проводятся ширение, декатировка, обработка на специальных усадочных машинах, противоусадочное пропитывание, термофиксация тканей из синтетических волокон и смешанных тканей, содержащих синтетические волокна. В швейном производстве для придания усадки всему полотну производится декатировка.

Паропроницаемость — способность ткани пропускать водяные пары. Коэффициент паропроницаемости В г1(м показывает, какое количество водяных паров проходит через единицу площади материала в единицу времени:

В = АL(Е),

где А — масса водяных паров, прошедших через пробу материала, г; Р — площадь пробы материала, м 1 время испытания, ч.

Паропроницаемость является важнейшим гигиеническим свойством материала, так как она обеспечивает выход излишней парообразной и капельно-жидкой влаги (пота) из пододежного слоя.

Паропроницаемость особенно важна для тканей с низкой воздухопроницаемостью. Паропроницаемость зависит от гигроскопических свойств волокон и нитей, составляющих ткань, и от пористости ткани, т. е. от ее плотности, вида переплетения и характера отделки. В тканях с неплотной структурой пары влаги проходят через поры, в более плотных материалах паропроницаемость должна обеспечиваться высокой гигроскопичностью волокон. Паропроницаемость — очень важное гигиеническое свойство бельевых, летних, спортивных изделий и спецодежды.

Водоупорность — способность ткани сопротивляться прониканию воды. Водоупорность особенно важна для тканей специального на значения (брезентов, палаточных, парусины), а также для шинельных, шерстяных пальтовых, плащевых и курточных тканей. Водоупорность тканей определяется их волокнистым составом, строением и характером отделки. Для увеличения водоупорности и придания водонепроницаемости ткани обрабатывают различными пропитками, на их поверхность наносят разнообразные пленочные покрытия. Водоупорность определяется методом кошеля и характеризуется временем, которое проходит с момента заполнения кошеля водой до появления первых трех капель на его наружной стороне.

Пылеемкость — способность материалов удерживать пыль. Она характеризуется относительной пылеемкостью П %.

Пылеемкость портит внешний вид ткани и загрязняет одежду. Наибольшей пылеемкостью обладают ткани из рыхлых пушистых текстурированных нитей, рыхлые шерстяные ткани с начесом, материалы с вертикально стоящим ворсом — бархат, велюр, плюш, искусственная замша, вельветоподобные трикотажные полотна и др.

Теплозащитные свойства являются важнейшими гигиеническими свойствами изделий зимнего ассортимента. Эти свойства зависят от теплопроводности образующих ткань волокон, от плотности, толщины и вида отделки ткани. Самым «холодным» волокном считается лен, так как он имеет высокие показатели теплопроводности, самым «теплым» — шерсть. Использование толстой пряжи, увеличение линейного заполнения ткани, применение многослойных переплетений, валка, ворсование увеличивают теплозащитные свойства ткани. Наиболее высокие показатели теплозащитных свойств имеют толстые плотные шерстяные ткани с начесом.

Чаще всего для характеристики теплозащитных свойств одежных тканей используют суммарное тепловое сопротивление. На теплозащитные свойства одежды существенное влияние оказывает число слоев материала в пакете одежды. С увеличением числа слоев материала суммарное тепловое сопротивление пакета воз растает.

В теплозащитной одежде высокое тепловое сопротивление должно сочетаться с достаточной паропроницаемостью, чтобы защитить человека от внешнего холода и не препятствовать удалению влаги с поверхности тела. Такое сочетание достигается при оптимальном подборе волокнистого состава, структуры полотна и видов отделки.

Термостойкость — это способность материала реагировать без изменения физических свойств на продолжительные или кратковременные нагревы. Термостойкость материала обычно характеризуется максимальной (критической) температурой. При температуре выше критической наступает ухудшение свойств материала, препятствующее его использованию.

В процессе изготовления швейных изделий текстильные материалы подвергаются температурным воздействиям при влажно-тепловой обработке и обработке на швейной машине разогретой иглой.

Самую низкую термостойкость имеют хлориновые волокна. Их размягчение наблюдается при температуре 95-100°С. У полиамидных волокон размягчение может наступить при температуре 170-235°С (в зависимости от модификаций), у полиэфирных — при температуре 220-240°С. Для натуральных волокон (шерсти, шелка, хлопка, льна) наиболее характерно разложение, проявляющееся в уменьшении их прочности (для шерсти происходящее при температуре, близкой к 235° С, а для шелка — при температуре 150-170° С).

Повышенный нагрев при глаженье и прессовании тканей уменьшает их прочность, устойчивость к многократным изгибам, истиранию, изменяет цвет материала.

При кратковременном нагреве процессы изменения физических свойств материалов имеют обратимый характер. Действие повышенной температуры можно регулировать уменьшением времени контакта. При длительном воздействии наблюдаются необратимые процессы теплового старения.

При стачивании текстильных материалов вследствие трения иглы о материал происходит нагрев иглы. Степень нагрева зависит от структуры, толщины, плотности, жесткости обрабатываемых материалов, скорости пошива, конфигурации иглы, чистоты обработки ее поверхности и т. п. Чем больше плотность, жесткость, толщина стачиваемых материалов, тем выше температура нагрева иглы.

Игла может нагреваться до 400°С. В этом случае при стачивании материалов, содержащих химические волокна, материалы размягчаются и налипают на поверхность иглы. При использовании синтетических ниток может происходить размягчение, которое вызывает ее обрыв.

Для снижения нагрева иглы при стачивании материалов рекомендуется использовать швейные машины с принудительным охлаждением иглы и применять дополнительную обработку (смачивание) поверхности ниток кремнийорганическими препаратами.

Оптическими свойствами тканей называется их способность вызывать у человека зрительные ощущения цвета, блеска, белизны и прозрачности. Цвет (колорит, окраска) ткани зависит от того, какую часть спектра отражает поверхность ткани. Если она отражает лучи всего спектра, то возникает ощущение ахроматического белого цвета. Если ткань поглощает лучи всего спектра, то возникает ощущение ахроматического черного цвета. При равномерном неполном поглощении возникает ощущение серого цвета различных оттенков. Если материал избирательно отражает световой поток, т. е. излучает волны, соответствующие восприятию определенного цвета, возникает ощущение хроматических цветов (всех цветов, кроме черного, белого, серого). Хроматические цвета характеризуются цветовым тоном, насыщенностью, светлотой; ахроматические — только светлотой.

Цветовой тон — основная качественная характеристика ощущения цвета, которая дает возможность сопоставлять цветовые ощущения образца материала с цветами солнечного спектра. В зависимости от длины излучаемой волны цветовой тон соответствует определенному цвету солнечного спектра: красному, оранжевому, желтому, зеленому и т. д. Расположенные по кругу цвета солнечно го спектра образуют непрерывный цветовой круг. Красный, желтый и синий цвета спектра называются основными. Комбинацией этих цветов можно получить разнообразные цвета и оттенки, называемые вторичными цветами. Например, смешивая красный с си ним в различном соотношении, можно получить довольно широкую гамму цветов — от пурпурного до фиолетового (малиновый, вишневый, бордо, лиловый и др.).

Противоположные цвета в цветовом круге называются дополнительными. Например, для синего цвета дополнительным является желтый. Смешав эти два цвета, можно получить зеленый цвет разнообразных оттенков.

Насыщенность — качественная характеристика ощущения цвета, позволяющая в пределах одного цветового тона различать разную степень хроматичности. Наибольшую насыщенность имеют спектральные цвета. К малонасыщенным цветам относятся розовый, салатовый, голубой и др.

Светлота — количественная характеристика ощущения цвета при его сравнении с белым. Оранжевый цвет светлее красного, желтый светлее синего. Светлота прямо пропорциональна насыщенности. Например, сиреневый цвет светлее фиолетового.

Под влиянием ряда факторов (света, воды, температуры, моющих средств) иногда происходит изменение цвета, которое может носить обратимый или необратимый характер. Например, выцветание от действия света носит необратимый характер, а изменившийся при влажно-тепловой обработке цвет может восстановиться при охлаждении.

Блеск ткани зависит от степени зеркального отражения ею светового потока. Блеск непосредственно связан с характером поверхности ткани, которая определяется строением нитей, их круткой, видом переплетения, характером отделки лицевой стороны. Использование гладких, профилированных (плоских и трехгранных) металлических нитей, переплетений с удлиненными перекрытиями (сатиновьих, атласных, основных саржевых), проведение прессования, каландрирования, отделки для придания лощеной и серебристой поверхности, отделки лаке, проведение металлизации увеличивают блеск тканей.

Матирование волокон, использование фасонной пряжи и нитей, текстурированных объемных нитей, рельефных и ворсовых пере плетений, начес, ратинирование, травление, гофрирование, флокирование, придание объемной структуры и заключительная декатировка уменьшают блеск ткани, так как способствуют рассеиванию падающего на нее светового потока. Для измерения интенсивности зеркального блеска текстильных материалов служит специальный прибор глянцеметр.

Прозрачность характеризует способность ткани пропускать лучи света, вызывая ощущение прохождения через ткань светового по тока, и дает представление о толщине материала. Прозрачность ткани зависит от прозрачности волокон и нитей, плотности ткани, наличия в ней сквозных пор, через которые проходит световой по ток, не меняя своего направления. Наибольшей прозрачностью обладают малоплотные и ажурные ткани из прозрачных полиамидных мононитей, малоплотные ткани из натурального шелка (шифон, креп-жоржет), малоплотные ткани из тонкой крученой хлопчатобумажной пряжи (маркизет, вуаль), синтетические креповые ткани с низким линейным заполнением. Светлые ткани кажутся более прозрачными по сравнению с аналогичными тканями, окрашенными в темные цвета.

Белизна определяется при сравнении рассматриваемой ткани с абсолютно белой поверхностью. Она связана со способностью ткани отражать световой поток. Для повышения белизны тканей проводится отваривание и беление с использованием различных отбеливающих веществ: восстановительных, окислительных или содержащих активный хлор. Увеличение степени белизны может быть достигнуто подцветкой ультрамарином, органическими красителя ми (метиловым голубым, основным фиолетовым и др.), применением оптических отбеливателей (флюоресцентных красителей). Блеск ткани увеличивает степень белизны, так как создает зеркальное отражение светового потока, поэтому после каландрирования ткань воспринимается как более белая.

Колорит — соотношение всех цветов, участвующих в расцветке ткани. Колорит тканей может быть солнечным, жизнерадостным, весенним, теплым, холодным, мрачным и т. д. Колорит ткани зависит от тональности, насыщенности, светлоты рисунка и вызывает разнообразные ассоциации. Одни и те же рисунки ткани могут иметь различное колористическое решение. Рисунки на тканях разделяют по их содержанию, размерам, форме. По содержанию рисунки на тканях делятся на сюжетные, о которых можно рассказать; тематические, которые можно охарактеризовать простейшим понятием (горох, цветы, полоска, клетка, бусы и пр.), и беспредметньие, т. е. абстрактные (пятна, неопределенные контуры и др.).

Электрические свойства. Электризуемость — способность тканей накапливать на своей поверхности статическое электричество. При соприкосновении и особенно при трении материалов, неизбежно происходящих при использовании текстильных изделий и их хим чистке, на их поверхности постоянно идет процесс возникновения и рассеивания электрических зарядов. Если равновесие между возникновением зарядов и их рассеиванием нарушается, на поверхности текстильных материалов создается определенный электрический потенциал — происходит электризация. Электризуемость непосредственно связана с природой образующих материал волокон, их строением, влажностью. С повышением влажности электризуемость снижается, так как повышается электропроводность. Синтетические волокна, имеющие низкую гигроскопичность, обладают способностью сильно электризоваться. Одежда из синтетических волокон может нарушать обмен веществ у человека, изменять его артериальное давление, способствовать ощущению дискомфорта, повышать утомляемость, раздражительность, т. е. оказывает отрицательное воздействие на здоровье.

Для снижения электризуемости рекомендуется обработка изделий из ацетатных, триацетатных и синтетических волокон поверхностно-активными антистатическими веществами (антистатиками), которые увеличивают электропроводность текстильных материалов, снижают пылеемкость и загрязняемость.

При разработке новых текстильных материалов электризуемость можно снижать рациональным подбором компонентов, входящих в состав смеси волокон. Сочетание гидрофильных и гидрофобных волокон — волокон, накапливающих заряды противоположного знака, снижает электризуемость.

helpiks.org