Микроэлементы в клетке

Макроэлементы — это вещества, необходимые для нормальной жизнедеятельности организма человека. Они должны поступать с пищей в количестве от 25 граммов. Макроэлементы — это простые химические вещества. Это могут быть как металлы, так и неметаллы. Однако они необязательно должны поступать в организм в чистом виде. В большинстве случаев макро- и микроэлементы поступают с пищей в составе солей и других химических соединений.

Макроэлементы — это какие вещества?

В организм человека должно поступать 12 макроэлементов. Из них четыре называют биогенными, так как их количество в организме наибольшее. Такие макроэлементы — это основа жизни организмов. Из них состоят клетки.

Биогенные

К макроэлементам относятся:

  • углерод;
  • кислород;
  • азот;
  • водород.

Их называют биогенными, так как они являются основными составляющими живого организма и входят в состав почти всех органических веществ.

Другие макроэлементы

К макроэлементам относятся:

  • фосфор;
  • кальций;
  • магний;
  • хлор;
  • натрий;
  • калий;
  • сера.

Их количество в организме меньше, чем биогенных макроэлементов.

Что такое микроэлементы?

Микро- и макроэлементы отличаются тем, что микроэлементов организму необходимо меньше. Чрезмерное поступление их в организм оказывает негативное влияние. Однако и их недостаток также вызывает заболевания.

Вот список микроэлементов:

  • железо;
  • фтор;
  • медь;
  • марганец;
  • хром;
  • цинк;
  • алюминий;
  • ртуть;
  • свинец;
  • никель;
  • йод;
  • молибден;
  • селен;
  • кобальт.

Некоторые микроэлементы при превышении дозировки становятся чрезвычайно токсичными, например ртуть и кобальт.

Какую роль эти вещества выполняют в организме?

Рассмотрим функции, которые выполняют микроэлементы и макроэлементы.

Роль макроэлементов:

  • Фосфор. Входит в состав нуклеиновых кислот и протеинов, а также солей, из которых формируются кости и зубы.
  • Кальций. Входит в состав костей, а также зубов. Кроме того, необходим для сокращения мышц. Из кальция также состоят раковины моллюсков.
  • Магний. Входит в состав хлорофилла, который обеспечивает фотосинтез у растений. В организме животных участвует в синтезе белка.
  • Хлор. Его ионы участвуют в процессе возбуждения клеток.
  • Натрий. Выполняет ту же функцию, что и хлор.
  • Калий. Обеспечивает удержание нужной воды в клетке. Участвует в процессах возбуждения клетки, а также необходим для функционирования ферментов.
  • Сера. Являются составляющей нуклеиновых кислот и белков.

Функции, выполняемые некоторыми микроэлементами, до сих пор не до конца изучены, так как чем меньше элемента присутствует в организме, тем сложнее определить процессы, в которых он принимает участие.

Роль микроэлементов в организме:

  • Железо. Участвует в процессе дыхания и фотосинтеза. Входит в состав белка гемоглобина, который транспортирует кислород.
  • Фтор. Является одной из составляющих эмали зубов.
  • Медь. Принимает участие в фотосинтезе и дыхании.
  • Марганец. Обеспечивает функционирование нервной системы.
  • Хром. Участвует в регуляции углеводного обмена и регулирует уровень сахара в крови. Кроме того, может замещать собой йод.
  • Цинк. Является компонентом инсулина — гормона, необходимого для превращения глюкозы в гликоген.
  • Алюминий. Участвует в процессе регенерации — восстановления тканей.
  • Ртуть. Является компонентом некоторых биологически активных веществ. Ее роль в организме человека до конца не изучена.
  • Свинец. Регулирует содержание гемоглобина в крови. Активирует некоторые ферменты. Участвует в обмене веществ. Стимулирует деление клеток.
  • Никель. Участвует в процессах кроветворения и синтеза организмом гормонов. Активизирует действие гормона инсулина и угнетает действие адреналина.

  • Йод. Обеспечивает нормальное функционирование щитовидной железы. Необходим для синтеза тиреоидных гормонов.
  • Молибден. Выводит из организма свободные радикалы. Участвует в синтезе аминокислот. Выводит из организма излишки железа, задерживает фтор.
  • Селен. Способствует усвоению йода, является компонентом биологически активных веществ, входит в состав сердца, поперечно-полосатой мускулатуры.

Макроэлементы клетки и ее микроэлементы

Рассмотрим ее химический состав в таблице.

Элементарный состав клетки
Элемент Процентное содержание в клетке
Кислород 65-75
Углерод 15-18
Азот 1,5-3
Водород 8-10
Сера 0,4-0,5
Фосфор 0,2-1
Калий 0,15-0,4
Хлор 0,05-0,1
Кальций 0,04-2
Магний 0,02-0,03
Натрий 0,02-0,03
Железо 0,01-0,015
Другие до 0,1 в общей сложности

Мы рассмотрели химический состав клетки на уровне элементов, но стоит учесть, что они, естественно, не содержатся в ней в чистом виде, а объединяются в органические и неорганические химические элементы.

В какой еде есть нужные организму элементы?

Рассмотрим в таблице, в каких продуктах содержатся макро- и микроэлементы.



Элемент Продукты
Марганец Черника, орехи, смородина, бобы, овсянка, гречка, черный чай, отруби, морковь
Молибден Бобы, злаки, курятина, почки, печень
Медь Арахис, авокадо, соя, чечевица, моллюски, лосось, раки
Селен Орехи, бобы, морепродукты, брокколи, лук, капуста
Никель Орехи, злаки, брокколи, капуста
Фосфор Молоко, рыба, желток
Сера Яйца, молоко, рыба, мясо, орехи, чеснок, бобы
Цинк Семечки подсолнечника и кунжута, ягнятина, сельдь, бобы, яйца
Хром

Дрожжи, говядина, помидоры, сыр, кукуруза, яйца, яблоки, телячья печень

Железо

Абрикосы, персики, черника, яблоки, бобы, шпинат, кукуруза, гречка, овсянка, печень, пшеница, орехи

Фтор

Растительные продукты

Йод

Морская капуста, рыба

Калий

Курага, миндаль, фундук, изюм, фасоль, арахис, чернослив, горох, морская капуста, картошка, горчица, кедровые орешки, грецкие орехи

Хлор

Рыба (камбала, тунец, карась, мойва, скумбрия, хек и др.), яйца, рис, горох, гречка, соль

Кальций

Молокопродукты, горчица, орехи, овсянка, горох

Натрий Рыба, морская капуста, яйца
Алюминий Почти во всех продуктах

Теперь вы знаете практически все о макро- и микроэлементах.

fb.ru


Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

  • макроэлементы, содержание которых не ниже 0,01%;

  • микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Макроэлементы:

  • Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.


  • Азот, кислород, водород, углерод. Это основные компоненты клетки.

  • Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.

  • Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.

  • Магний – компонент хлорофилла. Участвует в синтезе белков.

  • Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

  • Цинк – компонент инсулина;

  • Медь – участвует в фотосинтезе и дыхании;

  • Кобальт – компонент витамина В12;

  • Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;

  • Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.


Неорганические вещества клетки

Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

  • терморегуляции;

  • капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:


  • переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;

  • формировании нервных импульсов, имеющих электрохимическую природу;

  • сокращении мышц;

  • свертывании крови;

  • входят в состав белков;

  • фосфат-ион – компонент нуклеиновых кислот и АТФ;

  • карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Основные классы, имеющиеся в живых организмах:

Углеводы. В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

  • Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.


  • Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.

  • Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.

  • Сахароза (дисахарид) – источник энергии, образуется в растениях.

  • Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.
Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

 

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям). Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м. Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон. Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липидную структуру. Жиры входят в основу структуры мембран.



Белки или протеины 
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовыватьмежду собой связи. Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи. В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

  • первичная структура – аминокислотная цепочка;

  • вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;

  • третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;

  • четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры. 

Белки выполняют в клетке множество функций:

  • ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);
    транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;

  • защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.

  • структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;

  • регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;
    энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы —нуклеотиды, имеющие принципиально общую структуру из:

  • фосфат-группы;

  • дезоксирибозы;

  • азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

  • вместо тиминового нуклеотида – урациловый;

  • рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

  • 3 остатка фосфорной кислоты;

  • аденин;

  • рибозу.

cknow.ru

Макроэлементы.

Макроэлементы в значительных количествах представлены в живых организмах, начиная от сотых долей процента до десятков процентов. Если содержание какого-либо химического вещества в организме превышает 0.005% от массы тела, такое вещество относят к макроэлементам. Они входят в состав основных тканей: крови, костей и мышц. К ним относятся, например, следующие химические элементы: водород, кислород, углерод, азот, фосфор, сера, натрий, кальций, калий, хлор. Макроэлементы в сумме составляют около 99% от массы живых клеток, причем большая часть (98%) приходится именно на водород, кислород, углерод и азот.

В таблице ниже представлены основные макроэлементы в организме:

Элемент Символ
 Главные макроэлементы (99.3 % всех атомов)
Водород  H (63%)
Кислород O (26%)
Углерод C (9%)
Азот  N (1 %)
 Другие макроэлементы (0.7 % всех атомов)
Кальций Ca
Фосфор P
Калий K
Сера S
Натрий Na
Хлор Cl
Магний Mg

Для всех четырех самых распространенных в живых организмах элементов (это водород, кислород, углерод, азот, как было сказано ранее) характерно одно общее свойство. Этим элементам не хватает одного или нескольких электронов на внешней орбите для образования стабильных электронных связей. Так, атому водорода для образования стабильной электронной связи не хватает одного электрона на внешней орбите, атомам кислорода, азота и углерода — двух, трех и четырех электронов соответственно. В связи с этим, эти химические элементы легко образуют ковалентные связи за счет спаривания электронов, и могут легко взаимодействовать друг с другом, заполняя свои внешние электронные оболочки. Кроме этого, кислород, углерод и азот могут образовывать не только одинарные, но и двойные связи. В результате чего существенно увеличивается количество химических соединений, которые могут образовываться из этих элементов.

Кроме того, углерод, водород и кислород — наиболее легкие среди элементов, способных образовывать ковалентные связи. Поэтому они оказались наиболее подходящими для образования соединений, входящих в состав живой материи. Необходимо отметить отдельно еще одно важное свойство атомов углерода — способность образовывать ковалентные связи сразу с четырьмя другими атомами углерода. Благодаря этой способности создаются каркасы из огромного количества разнообразных органических молекул.

Микроэлементы.

Хотя содержание микроэлементов не превышает 0,005% для каждого отдельного элемента, а в сумме они составляют всего лишь около 1% массы клеток, микроэлементы необходимы для жизнедеятельности организмов. При их отсутствии или недостаточном содержании могут возникать различные заболевания. Многие микроэлементы входят в состав небелковых групп ферментов и необходимы для осуществления их каталитической функции.
Например, железо является составной частью гема, который входит в состав цитохромов, являющихся компонентами цепи переноса электронов, и гемоглобина — белка, который обеспечивает транспорт кислорода от легких к тканям. Дефицит железа в организме человека вызывает развитие анемии. А недостаток йода, входящего в состав гормона щитовидной железы — тироксина, приводит к возникновению заболеваний, связанных с недостаточностью этого гормона, таких как эндемический зоб или кретинизм.

Примеры микроэлементов представлены в таблице ниже:

Элемент Символ
Микроэлементы (менее 0.01% всех атомов)
Железо Fe
Йод I
Медь Cu
Цинк Zn
Марганец Mn
Кобальт Co
Хром Cr
Селен Se
Молибден Mo
Фтор F
Олово Sn
Кремний Si
Ванадий V

 

Ультрамикроэлементы.

В состав группы ультрамикроэлементов входят элементы, содержание которых в организме крайне мало (менее 10-12 %). К ним относятся бром, золото, селен, серебро, ванадий и многие другие элементы. Большинство из них также необходимы для нормального функционирования живых организмов. Например, нехватка селена может привести к возникновению раковых заболеваний, а недостаток бора — причина некоторых заболеваний у растений. Многие элементы этой группы также, как и микроэлементы, входят в состав ферментов.

Перейти к оглавлению.

www.studentguru.ru

Общие сведения о биологической роли микроэлементов

Каждая клетка и ткань организма представляет собой маленькую лабораторию, где постоянно протекают химические реакции, продуцируются питательные элементы, необходимые для жизни. Недостаток всего лишь одного химического элемента нарушает всю цепь химических реакций, провоцируя сбои в работе отдельных органов и их систем. Чтобы обеспечить нормальную жизнедеятельность, требуется правильная организация рациона питания — регулярное поступление минеральных элементов и правильное их соотношение.

В дополнении к питательным веществам в виде белков, жиров и углеводов, а также биологически активных компонентов в виде витаминов, организм человека нуждается в постоянном поступлении вместе с пищей минеральных веществ.

Минеральные вещества в питании являются незаменимыми элементами, не синтезируются в организме человека и относятся к основным незаменимым компонентам питания. Недостаток или избыток их вызывает нарушения, приводящие к заболеваниям.

В человеческом организме минеральные вещества представлены в виде кристаллов в костях и в виде коллоидных растворов в мягких тканях.

По количественному содержанию и степени значимости для живых организмов, все минеральные вещества можно условно разделить на три группы:

  • Органогены: базовые химические элементы, из которых состоят фактически все живые организмы на нашей планете (кислород, углерод, водород, азот)
  • Макроэлементы: это те элементы, что необходимы организму в макроколичествах (обычно миллиграммы).
  • Микроэлементы: это те элементы, что необходимы организму в микроколичествах (обычно микрограммы)



Основные функции микроэлементов в организме человека

  • пластическая функция в процессах жизнедеятельности и участие в построении тканей, в особенности костной, где кальций и фосфор – главные структурные компоненты.
  • участие в обменных процессах человеческого организма: поддержание кислотно-щелочного равновесия, водно-солевого баланса.
  • содействие в поддержании осмотического давления в клетках.
  • воздействие на иммунную систему, систему кроветворения, свертываемость крови.
  • участие в ферментативных процессах и в структуре ферментативных систем.

При дисбалансе микроэлементов наиболее часто возникают следующие заболевания и болезненные состояния:

  • снижение работы иммунной системы
  • заболевания ногтей, волос, кожи
  • аллергические реакции
  • ожирение
  • диабет
  • гипертоническая болезнь
  • патологии сердечно-сосудистой системы
  • заболевания крови
  • остеохондроз, остеопороз, сколиоз
  • гастриты, хронический колит, дисбактериоз
  • бесплодие
  • нарушения развития и роста у детей.



Суточная потребность в микроэлементах для человека


Функции микроэлементов, последствия их недостатка и в каких продуктах они содержится

woman.best

Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.
Условно все элементы клетки можно разделить на три группы:
# 1 Макроэлементы
# 2 Микроэлементы
# 3 Ультрамикроэлементы
К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %. Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты) , в состав костной ткани и зубной эмали (в виде минеральных солей) , а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов) .

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза) . Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессы осморегуляции (в том числе работу почек у человека) и создании буферной системы крови.

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах.

Хлор — поддерживает электронейтральность клетки. полностью

otvet.mail.ru